What is C-Testlt!

C-Testlt! is a product that allows users to “unit test” their C
code. “Unit testing” in the case of C is understood as the ability to
test a function with a number of different sets of parameters and
then check the expected results, this is usually referred to as Black
Box testing. C-Testlt! also allows users to specify a number of
“assertions”; “assertions” are conditional statements that will be
checked by C-Testlt! during execution of the function under test,

this is referred to a Gray Box Testing.

C-Testlt! uses a unique approach for unit testing, in that it
actually allows you to test functions in the very body of your own
application, since the tests are done not on the C source but on
the actual executable file that is your application. This approach
guarantees that the function is working in its final environment, and
it relieves the sometimes tedious steps of having to recompile and
link the tested function with added code that will implement the
test. In the case of C-Testlt!, no code is added to your function, no
compilation or link is necessary, C-Testlt! directly uses your own
application.

C-Testlt! Main features

In Application Unit Testing.The code under test is the exact
code you will later put into your target

Can check every function of the project
All functions compiled in debug mode can be checked,
with a single file load.

Gray Box Testing
User can specify a number of conditional statements
that will be evaluated during function execution.

Works directly on the application code: no need to recompile
or re-link

Defines input parameters and expected results
All parameters of the function under test can be
specified, using C expressions.

Defines values for global variables
Global variables can de defined for every test using C
expressions

Test the function at their real location
Since the test is done using the real application code,
functions are thus tested at their real location thereby
releaving the issues of function location, bank
switching, ...

Test with the same memory model and compiler options
than the real project
The real code is tested so all options and parameters
of the code are the respected

Inputs (arguments, globals) can be specifieg []
value, or as a range or a set of values thereby allowing to"
test the same function with different inputs in the same test
session.

Create a suite of tests, or “Testoramas” to be run together.

Supports simulator and real hardware (BDM or ICE, JTAG,
Emulators)
C-Testl! Offers several variants for executing the code
under test.

Supports all targets for which Cosmic Tools are available.
Runs interactively or in batch mode
Tests can be run immediately and results visualized
graphically or they can be run in batch mode with
logging of output results.

Can produce reports for archive

Can produce additional information such as Code Coverage
and execution timing

Using C-Testlt!

As explained earlier C-Testlt! runs using an executable file
produced by the Cosmic Tools. Tests can be created, saved,
loaded and executed later, or they can be grouped in
“Testoramas”.

We are now going to see how:

To start C-Testlt!

Create a simple test and specify input and output
values

Specifying input and output values

Save a simple Test

Run a test

Adding Assertions

Create a Testorama

Save a Testorama

Run a testorama

Starting C-Testlt!

C-Testlt! can support all targets for which a Cosmic tool chain
exists. So one you have started C-Testlt! you need to specify for
which target processor and which execution environment you are
going to specify the tests. Please note that the target specification
becomes part of the test definition, while the execution
environment is not; i.e. a test for a specific target can be used with
any execution environment available for that specific target.

Once you start C-Testit! the screen should look like:

Testlt!
File Target (FreeScale_6812/Simulation) Run Show Path Windows About WebSite

= =d 8l8] @
=

FreeScale_6812 ¥

The main window is composed of:

- the application pane on the left which will show all the
components of the executable file for which tests will
be built/run

- the test window where tests will be displayed, as well
as source files if necessary.

The menu shows what is the current target and environment, in the
above example the Freescale HC12 is selected and the simulation
execution environment is also selected. To change these

L) |
selections, use the menu entry. ﬁ,ﬁIIMI”a,y
You will then get the following dialog that will allow y

ou to make
your own selection:

Select Target

Target:
i FreeScale 312 j

E =ecution Engine:

] Simulation _vj
|

You can then select the target, the screen would look like:

Target:
|FreeScale_6812 |
FreeScale_B308

FreeScale 6212

ST_ST7

] I=TITIF] L] ...U

|

And you can select the execution environment, the screen will look
like:

Select Target

Target:
]FreeScaIe_EEEIB _vJ

E mecution Engine:
Indartz03

] S

Simulation
P | ———— T

Once you have finished the selections, you can start creating new
tests.

Creating a Test:

To create a test the first step is to load the executable file
that contains the function to be tested. To do so you can use either
the menu or the button bar.

Once you have loaded the executable file the application
pane will display information about the application. You will then
be able to list the functions names and the variable names
included in your application.

Your screen will look like:

File Target (FreeScale_6812/Simulation) Run Show Path Windows About WebSite

= =@l glel[=

igger
i buffer[2][4]
" Range
P res

FreeScale_6812 2

Now to create a test for a specific function j
the function name in the application pane; this will'open’
window with all the components of the test displayed W|th thelr
default values.

File Target (Freescale 6512 Simulation)

Run Show Path Windows About WebSite

= =@l glel[=

ari
®8 Bigger

" Range
P res

=8 buffer2][4]

Ohject Output Expression

=) Test Name is_val_in_range
Fi\testeriiucaltest 12
te:

is_val_in_range)

(53 Globaks Referenced o

© Unchecked

= B Reports
Do not Generats Reports

[Tk Timeout (in sac.) &0

[[Freescale_6812 y

The test window is composed of three columns. The leftmost one
lists all the objects that are manipulated by the test, the middle one
shows input values, when appropriate, and the right most one
shows output values where appropriate. When a test is created all
appropriate values are set to their defaults. “Unchanged” is used to
indicate an input value that is not specified and “Unspecified” is
used to indicate an output value that needs not be checked for this

test.

The leftmost window lists all the objects of the test in the following

order:

Test Name: this is a name that by default is the same as

the function name under test. The user can edit this,by

right clicking on it.

The Executable file name used for the t i I , y
The name of the source file that includes'the function
under test.

The name of the function under test

Then we find the Globals entry. This entry exists if and
only if the function under test uses globals variables of the
program. This entry can be expanded to view all the use
variables as well as their components for aggregate
variables. Each of these variables can receive an input
value for the test by right clicking the correspondent entry
in the middle window, and receive an output value by right
clicking the correspondent entry in the rightmost window.
This is then followed by the list of arguments to the
function if appropriate. Each argument can receive an
input value by right clicking on the correspondent entry in
the middle window.

The function return value. In case of a function returning
an aggregate, this entry can be expanded to show all
components. The return value can have a specified output
value by right clicking the correspondent entry in the
rightmost window.

Then one finds the “assertions”. Assertions are conditional
expressions that will be tested during the execution of the
function. To add an “assertion” simply right click on the
assertion Icon or text in the leftmost window; this will bring
up a dialog that is used to specify assertions.

After the Target entry is displayed. This entry allows to
specify the Stack value used for the test, and the address
from which the function call should be executed.

The Reports entry that allow to specify whether reports
should be created and where they should be saved To
modify the report status simply right click on, the Reports
entry in the leftmost window.

Finally there is the Time-Out entry. This entry allows to
specify a time out for the execution of a function. This is to
cope with situations where the code being tested does not
“‘end” execution. The Time out value is used to stop a test
in such cases. To modify the Time out value simply right
click on the correpondent middle window entry.

Specifying Input and Output values

To specify an input or an output value right click on the entry where
appropriate. Input output values for globals, arguments, as well as
function return, can be specified either as a simple value, or as a
valid C expression. Additionnaly Inputs can be specified as a range
of constant values or as a set of constant values. To specify a
range the following notation is used: [<low_val>,<high_val>], the
test will be run for every value in that range; to specify a set the
following notation is used: {<val1>, <val2>, ..., <valn>}, the test will
be run for every value in the set.

If an output value is specified as a constant or a C expression
without any comparators (i.e. <, > ...), the it is taken to specify the
exact value of the corresponding object; otherwise it is taken to be
an expression to be evaluated and the value thus obtained is
tested for true or false.

Once input, output have been specified the screen will look like:

File Taroet (Frestesle 6002 Smuaton) Run Show Path Windows About WebSite

Object Input Yalus Qutput Expression
=] Test Hame is_val_in_range |

Fritesterilucaltest.hiz
test.c
{} is_val_in_rangs()

(3 Globals Referenced Q

Range.start
{1, 2,4}
[8 12]

Ox4000
0xffo

Do not Generate Reparts

Sk Timeout (in sec.) &0

3 \ >

Files Functions Variables]

|Freescale_s12

10

Run a test

One a test is completely specified, you can launch the test, and
the result will be something like:

Ll
Fle Target (Fre=Sea lafon) Run Show Path Windows About WebSte
= ZH 880
=)}
=3
(L5E Ohject Trput Yalus Qutput Expression
- W) Funeti
= unctions .
Lk exkern (char) enum is_val_in_rangs(=] Test Mame is_val_in_range
{} externint mainf) Fiitesteriiucaltast hi2
Lo} eskern struct range makerange(int |, test.c
{} extern void nothingdint i, int 3 A} is_val_in_range()
= I variables
51 W8 Bigger # (] Globals Referenced
P c
@ s = B Arguments
@i = "8 structrange r
@ int skart Range.start
|
" rhigger @ int len 3
@ start @ int v 8
@ len
"8 buifer2]4] = Function return =]
%8 Range @ (charyerum is_val_in_range @ yes
@ start
@ len Assertions
res
= Wl Target
= Caling PC Ozd000
H stack Pointer 0xffn
[= Reports
Do not Gensrake Reports
Timeaut (in sec.) &0
X TExecutable File: Frtestersucantest.niz a
Fils Name: test.c 8 |
Function: is_val_in_rangs{}
Globals Input:
Arguments Input:
rstart: "Range.start”
rlen: 3"
g
Globals Output:
Return Val
is_wal_in_range "yes" Checked
**************************** &
£ | O Test Status: SUCCESS #rrres
Files Functions Variables ——
Test Case g 1 ot of 1 Freescale_6812

You can see the GREEN light icon next to the function output,
which highlights the fact that the return value of the function does
match the output value specified, if that was not the case the Icon
would be a red light. You can also see the output window which
contains a textual report as to the test execution.

11

Adding Assertions

Assertions are expressions that will be evaluated while the
program is running. Assertions are attached to a particular source
line in the function under test. They allow to test a condition every
time this line of code will be executed. Please note that the
assertions are evaluated BEFORE that line of code they are
attached to, is executed.

Assertions can for example allow you to test that a particular
variable does meet some specified condition when a line of code is
reached.

To add Assertions to a test, simply right Click on the assertion Icon
in the leftmost part of the test window.

The following dialog is then displayed:

Create/edit Assertion E|

Lire Exprezsion

| Browsze Source |

] Cancel

The Browse button can be used to display the code of the function
under test. You must then specify a line number, and a valid C
expression, that will be evaluated when that particular line of code
is reached.

When a test is executed, assertions will be displaf“"“
GREEN light icon is their expression is TRUE, andiwilllbe’ £
displayed with a RED light Icon if their expression is false.

12

Here is an example of assertion:

Line Exprezsion
27 |v < r.gtart
[G |
Ok I Cancel |
[} = typedef struct bigger { ~
7 char o |
g shart s;
9 int iy
10 long I;
11 RANGE rbigger;
e } BIGGER;
13
14 typedef int value; =
15
16 typedef enurm {no, yes} result;
17
18 result res = yes;
19 RANGE Range = {7, 12};
20 BIGGER Bigger = {0, 1, 2, 3, {10, 20} }; =
z1 int buffer[2][4];
22
23 /M Check if value in range
24 o
25 result is_val_in_range{RANGE r, value v}
26 =
27 Range.start = r.start;
28 Range.en = r.len;
z9 if {v < r.start)
30 return {noj);
31 if {{r.start + r.dend < v)
3z return {no);
33 return {yes);
34
35
£ % Datirn s steuct Ao

Once you validate the assertion (by clicking OK), the screen will
look like:

C-Te:

File Taroet(Fressidle so02/5ulaion) Run Show Path Windows About WebSite

= =@ 8le|[m

=/ | 5 |
[reste Object Input Valus OutpLt Expression
Filtesterllucaltest.h1z - | A
test.c

{} is_valin_range(}
3 Globals Referenced o]

= B Arguments
= "% shruck range r

@ int start Range.start
@ it len 1,2, 4
@ int v = [8 12 = =

= 4 Function return
@ (char)enum is_val_in_rangs @ ves

= Assertions

at Line: 27 @ v <r.start

= WM Target L L L
= Calling PC Ox4000
H stack Painter 0xff

= B Reports
[

5 | Variables

FresScale_6612 2

13

If we run a test with assertions here is what the screen may look
like:

€ C-Testlt!
File z oy Rum Show Path Windows About \WebSite

= =3 8l8| =

x|

= test.c
= il Functions
4} extern {char) enom is_val_in_ #=) Test Hame # | Is_val_in_range ~
4F externint main() Filtesterilucaltest h12
{} extern struct range makerang: test.c
{} extern void nathinglint i, int 4} is_val_in_range(}
=] variables
- % Bigger + 27 Globals Referenced
" buffer[2]4]
" Range = ¥ arguments
= "8 structranger
@ ink start Range, start
@ int len 3
@ it v 8

Object Input Value Output Expression

= Function retum @
@ ichar)enum is_val in_range @ ves

= Assertions []
st Line: 27 @ v <rostart

= WM Target
= Calling PC 0x4000
H stack Pointer oxffo

= Reports
Do niok Generate Reports

El' TimeOut {in sec.) _| &0

Test Mame: is_val_in_range
Executable File: Fihvtesterslucaitest.h12
File Name; test.c

Function: is_val_in_range()

Globals Input:
Arguments Input:
r.start: "Range.start"
rlen: 37
L ge
Globals Output:

Return Walues:
< | > is_wal_in_range "yes" Checked

Functis Watiabl
Files unictions 'atiables B

Test Case ng 1 out of 1 FreesScale_6812

In this case you can see that the assertion is displayed with a RED
LIGHT icon because it did not evaluate to TRUE.

Assertions are the means to create “GRAY BOX Tests”, i.e. tests
where the user has visibility of what happens inside the function
under test.

Save a Test

[;/[
To save a test, select the appropriate menu option under the File
Menu. You will have to enter a name for the saved test. Tests are
saved in .CTH files, and can then be later reloaded for execution or

editing/updating.

14

Creating a Testorama

A Testorama is a suite of tests all using the same executable file.
When a testorama is executed reports for all of the tests can be
collated in a unique report thus allowing the user to gather test
information for a set of related functions.

To create a Testorama, use the menu Option File->New-
>Testorama, this creates aTestorama window and the screen
should look like:

Ci C-Testit! B
File Taroet (Fresfcale 6212/Simulation) Run Show Path Windows About ‘WebSite

= =(m| 8l8|[@
=——— 1

B Testorama

[Freescale_6812

The testorama window show:

- The Testorama name. You can update tﬂ’

clicking on it.

- The lcon for the executable file that the testorama will
use. This will be updated when you add a test in the
Testorama

15

- The Options Icon will allow to specify options for the
testorama
- The set of test files for this Testorama.

Here is what the screen may look like once you have started to
specify the components of the testorama:

€+ C-Testit!
File Target (Fresscale o612/ Simulations Run Show Path Windows About ‘WebSite

= z(d| 8/8|[m

Bl B Testorama_Luca

@5 Testorama_Luca

test h1z

Oplions

= & Tests
F:itestertlucainathing.cth
Fi\tester|lucaimakerange.cth
: Fritesterlucal TOTO.CTH

Files Wariables

FreeScale 6812

This testorama is based on executable file test.h12, and it will
execute the following tests is sequence:

f:\tester\luca\nothing.cth

i i
f:\tester\luca\makerange.cth
f:\tester\luca\toto.cth

16

The options of a Testorama can be viewed/specified by right
clicking, the Options Icon. The following dialog is then displayed:

Testorama Options

[7 Stop Testorama onAny Test Failune

% Show Output window during execution

[+ Log Output in File: |cts.LDG Browse
¥ Collate Reparts in File: |nrama.HPT Browse
oK. Cancel

The options are:

- Stop Testorama on Any Test Failure

- Show Output window during execution. This will open the
output window to show the tests execution.

- Log Output To File. This allows to duplicate the output
produced in the output window into a file, which can be
archived or examined later

- Collate Report Files, this allows to collate all the report
files produced by the individual tests in a unique file.

17

Run a Testorama

Once a Testorama is completely specified, you can launch the
test, and the result will be something like:

C: C-Testlt!

File Taroet (Freefosle 2212/ 5mulztion) Run o Show Path Windows About WebSite

= =@l glel[m

[=
ERE] - - o
= 1 Functions ™ makerange Test ns =
i 4} extern (char) er o =
H v {} extern int maing
f I} exbern struck rai -
o dF externvoid not
= 0 variables = i Object Input Walue Output Expression
- M8 Boger = £l @ik A 17 A =
- " buffer[2][4] @ int — - = 5|
- " Range
@ res =
= Assertions
=1 WM Target
= = Calling PC = 19
E B stack Pointer 20
=] Reparts b | F T
Do nok Generate Reports
&l £ v
A ~
Test Marme: nothing El
Executable File: test.h1z B
File Name: test.c
Function: nothing()
Glabals Input:
buffer[0][0]: S
buffer[0][1]: “2"
buffer[0][2]: ikl
buffer[0][3]: gt
buffer[1][0]: "g"
buffer[1][1]: "g"
buffer[1][2]: e
r e | > buffer[1][3]: "g"
- — Bigger.c: "9" o
Files Variables output |
[Test Case ng 1 out of 1 [Freescale_sa12 /,J

A test window is opened for every test specified in the testorama,
that test window show results for that particular test.

Save a Testorama

To save a Testorama, select the appropriate menu @
the File Menu. You will have to enter a name for {
testorama. Testoramas are saved in .CTS files, and can then be
later reloaded for execution or editing/updating.

18

